Summary from Previous Lecture

- ISM is a multi-phase system:
 - Gas + solid (dust)
 - Gas can be molecular (MCs, dense), atomic (HI regions), ionized (HII regions, dense)
 - Reflection and Dark Nebulae are produced by Dust
- Where is dust produced ?
- Dust forms by nucleation and then grows by accretion
- Why is dust important ?
- It locks most heavy material: C, Si, Mg
- It shapes the emission of galaxies in the IR/mid-IR
- It is the source of extinction, re-process UV into the IR
- It is a tracer of Star formation

Interstellar Extinction

Figure IV-1: Effect of extinction on a stellar spectrum. Extinction is both a total diminution of the stellar light, and is wavelength-selective, in the sense that bluer wavelengths are more extinguished than red wavelengths.

 $\tau_{\lambda} = const \times f(\lambda)$

It was recognized that the optical depth depends on the distance from the source (e.g. total column density) and on a universal extinction function

Empirical Extinction Curves

Based on extinction measurements from the UV to NIR, c.f. Fitzpatrick, PASP 111 63 1999 & Draine, ARAA 41 241 2003

- R_v depends on the material along the l.o.s
 - For the diffuse ISM $R_V \sim 3.1$
 - For dense MC $R_V \sim 4-6$
- Bump at 2175 Å is due to particles rich in C, graphite or amorphous carbon grains
- The shape of the interstellar extinction curve contains information about the size and chemical composition of interstellar dust grains (MW curve best interpreted as mixture of silicates & graphites)

Optical Property of Dust Grains

For simplicity, we consider homogeneous spherical dust particles of radius *a* and introduce the *cross section for extinction*

$$\sigma(\lambda) = \pi a^2 Q_{ext}(\lambda),$$

where $Q_{ext}(\lambda)$ is the *efficiency factor for extinction*. The optical depth along a line sight with volumetric dust density n_d is then

$$\tau_{\lambda}^{ext} = \int n_{dust} \sigma_{\lambda}^{ext} ds = \sigma_{\lambda}^{ext} \int n_{dust} = \pi a^2 Q_{ext}(\lambda) N_{dust}$$

Extinction in magnitudes A_{λ} is defined in terms of the reduction in the intensity cause by the presence of the dust :

$$I(\lambda) = I_0(\lambda) \exp\left[-\tau_{\lambda}^{ext}\right],$$

 $A_{\lambda} = -2.5 \log_{10} \left[I(\lambda) / I_0(\lambda) \right] = 2.5 \log_{10}(e) \ \tau_{\lambda}^{ext} = 1.086 \tau_{\lambda}^{ext}$

E-M scattering by small particles

A. N. Mie (Ann Phys 25 377 1908) solved Maxwell's Equations for scattering by a uniform sphere of radius *a* and a general index of refraction

m = n - i k with $m = m (\lambda)$,

The mathematical basis is a *multipole expansion* of the scattered wave in terms of (vector) spherical harmonics times, each multiplied by a radial Bessel function, plus the application of appropriate boundary conditions at the surface of the sphere. The classic reference is: H.C. van de Hulst, "Light Scattering from Small Particles"

The basic parameter, measuring radius in terms of wavelength is: $x = 2\pi a/\lambda$

- x << 1: long wavelength diffraction limit need only a few terms
- x >> 1: short wavelengths geometrical optics limit -need many terms

Asymptotic Mie Formulae For $x = 2\pi a/\lambda << 1$

$$Q_{abs} = -4 x \operatorname{Im} \left(\frac{m^2 - 1}{m^2 + 2} \right) \propto \lambda^{-1}$$
$$Q_{sca} = \frac{8}{3} x^4 \operatorname{Re} \left\{ \left(\frac{m^2 - 1}{m^2 + 2} \right)^2 \right\} \propto \lambda^{-4}$$

In this long wavelength or Rayleigh limit, the absorption cross section depends only on the mass of the grain:

$$\sigma_{abs} = Q_{abs}\pi a^2 \propto a^3 \propto m_{dust}$$

Note:

- 1. The λ^{-1} behavior explains the extinction curve
- 2. The λ^{-4} behavior explains why scattering is more effective on blue wavelengths

Schematic plot of extinction

General Properties

- 1. λ^{-1.5} trend in the optical/NIR
- steep UV rise with peak at ~ 800 Å
- 4. strong features:
 - $\begin{array}{l} \lambda = 220 \text{ nm}, \ \Delta \ \lambda = 47 \text{ nm} \\ \lambda = \ 9.7 \ \mu\text{m}, \ \Delta \ \lambda \sim 2\text{-}3 \ \mu\text{m} \\ \text{(not visible on this plot)} \end{array}$

Remember, grain sizes: 5 --3000Å (e.g. <0.3 μm)

Empirical Extinction Curves

Based on extinction measurements from the UV to NIR, c.f. Fitzpatrick, PASP 111 63 1999 & Draine, ARAA 41 241 2003

- R_v depends on the material along the l.o.s
 - For the diffuse ISM $R_V \sim 3.1$
 - For dense MC $R_V \sim 4-6$
- Bump at 2175 Å is due to particles rich in C, graphite or amorphous carbon grains
- The shape of the interstellar extinction curve contains information about the size and chemical composition of interstellar dust grains (MW curve best interpreted as mixture of silicates & graphites)

Fitzpatrick et al 1999

Extinction

T. Montmerle

Dust Emission

- Herschel result on 1987a
 - Warm dust is heated up in the ring
 - Cold dust is in the center (T~20K)

* Grains at thermal equilibrium at a distance r=0.5pc from an O_6 star (R*=1.1 10¹² m, T*=40000 K)

→ Tg= 650 K

* Grains in diffuse medium, heated by ISRF: a=0.1μm, Tgraphite=18.8 K, Tsilicate=15.4 K (Draine & Lee Model (1984))

* Grain in a Bock globule : T ~ 14 K.

 $\Rightarrow \mathbf{mm} \text{ excess}$ $\Rightarrow \text{ very cold dust (5-7 K)}$

mm excess is actually strongly correlated to FIR emission This lead Reach et al. to <u>reject</u> "very cold" dust.

Finkbeiner et al. 1999 (FSD) 2 components= Graphite + Silicate

Number	Model	α1	α2	f_1	q_1/q_2	$\langle T_1 \rangle$	$\langle T_2 \rangle$	P_{1}/P_{2}	χ^2	χ^2_{ν}
1	One-component: v1.5 emis	1.5		1.0	1.0	20.0			24943	204
2	One-component: v1.7 emis	1.7		1.0	1.0	19.2			8935	73
3	One-component: v2.0 emis	2.0		1.0	1.0	18.1			3801	31
4	One-component: v2.2 emis	2.2		1.0	1.0	17.4			9587	79
5	Pollack et al. two-component	1.5	2.6	0.25	0.61	17.0	17.0	0.33	1866	15.3
6	Two-component: both v2	2.0	2.0	0.00261	2480	4.0	18.1	0.0026	1241	10.3
7	Two-component: fit f, q	1.5	2.6	0.0309	11.2	9.6	16.4	0.0319	244	2.03
8	Two-component: fit f, q, α_1 , α_2	1.67	2.70	0.0363	13.0	9.4	16.2	0.0377	219	1.85

2 T models can fit sky brightness distribution beautifully, but requires to explain the physical origin of the very cold dust at 9K

Dust emission from Galaxies

- 5-20 µm dominated by Polyclic Aromatic Hydrocarbons
- λ>20 µm dominated by the thermal emission of the main grain population
- λ >60 µm dominated by the emission from large grains

Rieke et al. 2009

In the High Z Universe Dust is Our Friend

- FIR emission from dust has a negative 'K' correction (the observed flux is only weakly dependent on distance)
- It is thus relatively easy to detect distant galaxies in the FIR

Polarization

- Polarization was first observed by Hiltner and Hall in 1949
 - Demonstrates grains are non-spherical and are aligned (presumably) by B fields
- Polarization due to `linear dichroism'
 - E.g. the cross section is larger in 1 direction than the other one

Polarization

- Max polarization is @ $5.5\mu m$ but ranges between 0.34 and 1.0 μm
- Polarization rises through UV, peaks in optical, and falls thereafter
 - Not like the monotonic decrease of extinction from UV to IR
 - Suggests that grains responsible for UV extinction do not contribute to polarization: e.g. there are a mix of grains
- Grains are spinning!
 - Rotation velocity of ~1e5 Hz

Other Forms of Polarizations

- Scattering !
 - It introduces, always, polarization

- Far-IR polarization:
 - Large grains heated to equilibrium have temps of 30-50K and radiate at 60-100 μm
 - Emission is larger along the long axis (in contrast to transmission)
 - This gives a net polarization of the thermal radiation with P aligned with the long axis
 - For the transmission case P is aligned along the short

Recap on Dust

- Dust is responsible for extinction (IR to UV) and shape the SED of galaxies
- Galaxies are bright at IR due to dust emission
- Dust comes in many sizes: power law a^{-3.5}
 - Interpretation of extinction curve, scattering
- Dust is made by a mix of grains: graphites, silicates, ice
 - PAHs, temperature map of the Galaxy, polarization vs extinction
- Dust grains are aligned by the magnetic field:
 - Polarization