Recap, with questions ;), from previous Lecture

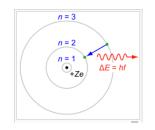
- What is a Galaxy ? And what are its components
 - Stars, remnant, ISM, CRs, DM
- How many stars there are in a Galaxy ?
- How many galaxy there are in the Universe ?
 - How many stars there are in the Universe ?
- What's the mass of the Milky Way ?
- Morphology of Galaxy: how many types ?
- Name at least 3 spatial/kinematic components of the Milky Way ?
- Name this galaxy !
- And this one !
- When is thanksgiving ?

Interstellar Medium

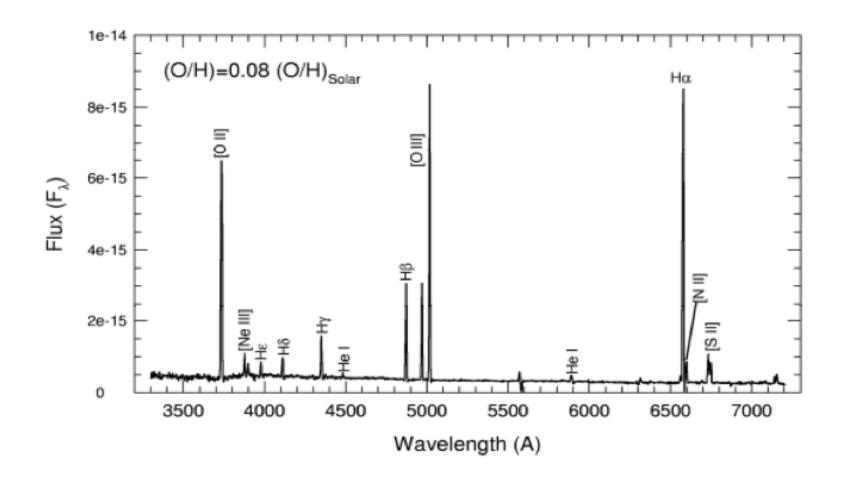
Inter-Stellar Medium (ISM)

- Stars are separated by ~2pc, they fill very little space
- What's in between them ?
- The ISM: H, He and higher Z materials
 - Gas phase + solid/ice
- How do we know the ISM exists ?
 - Extinction (1 mag per kpc l.o.s, unobscured)
 - Reddening (scattering of high-freq. radiation)
 - If you know the star true color/spectrum then we can measure the column density of the ISM
 - Stationary lines (lines in spectra of binaries that are not redshifted)
- Sense of scale:
 - ISM density $n \sim 1 \text{ cm}^{-3}$ / Dense MC cores 10^5 cm^{-3}
 - Star density $n \sim 5 \text{ cm}^{-3}$
 - This room $n \sim 3 \times 10^{19} \text{ cm}^{-3} \text{ (mole/22.4l)}$
 - Best human-made vacuum: $3x10^4$ cm⁻³
- The total mass of the ISM is estimated $\sim 6.7 \times 10^9 M_{\odot}$
 - We know this from galaxies rotation curves (measures total mass) and assumption on the gas/stars ratio
- Why is it important ?
 - ISM is the birthplace of stars, ISM includes the collection of the ashes from the previous generation stars -> Metallicity slowly increases
 - Its constant evolution/enrichment drives galaxy evolution

ISM


- Objects:
 - HII regions
 - Reflection Nebulae
 - Dark Nebulae
 - Photo-dissociation regions (PDRs)
 - SNRs
- These are all visible manifestation of different phases:
 - Neutral atomic gas
 - Ionized gas
 - Molecular gas
 - Coronal gas

HII Regions


- HII regions surrounding early type (<B1, T_{eff}~25,000K) stars
 - Emit lots of >13.6 eV ionizing photons
 - Ionized gas, bright visible objects
 - − T~10⁴ K
 - n~10³-10⁴ cm⁻³ for compact 0.5pc³ nebulae, n~10 cm⁻³ for larger
- Associated with star forming regions and molecular clouds
- Optical spectra dominated by H and H_e recombination lines
- Strong emission from thermal radio emission, warm dust

HII Optical Spectrum

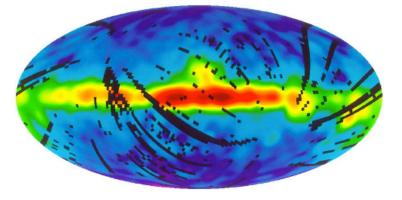
- H α and H β lines and O[III] (double ionized) and O[II] (ionized) oxygen

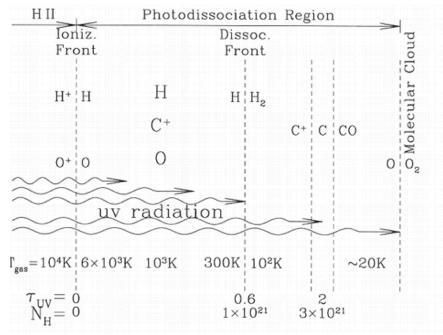
Reflection Nebulae

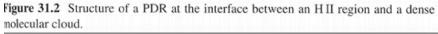

- Bluish nebulae reflecting light from nearby stars:
 - NGC 1977 in Orion;
 - emission around the Pleiades
- No radio emission, but infrared emission from warm dust present (less intense than from HII regions)
- Illuminated by stars later than B1 (less emission short of Lyman limit)
 - Otherwise they would be emission nebulae (and ionized)
- Less denser than HII regions ($n < 10^3 \text{ cm}^{-3}$)
- Either cloud material from which star was formed; or chance encounter (Pleiades!); sometimes ejecta of late-type

Dark Nebulae

- Dark stripes in the MW, Bok globules, horsehead nebula
- Faint in Optical, bright in IR, sometime seen against bright foreground

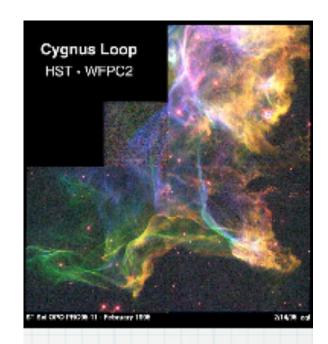



Photo-dissociation Regions


- Transition zones between atomic (HI) and molecular (H₂) gas near bright O, B stars
- Neutral regions where >6eV (FUV) photons are the main source of heat, dissociate and ionize molecular gas. Most photons absorbed by dust, but some add to heating through photoelectric effect -> few hundred K
- PDRs bright in IR dust continuum

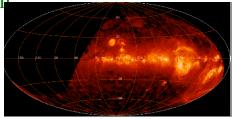
PDR Emission

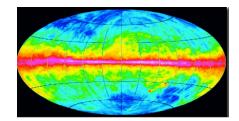
Cobe FIRAS map of the Galaxy (C⁺ line, 157.7µm)



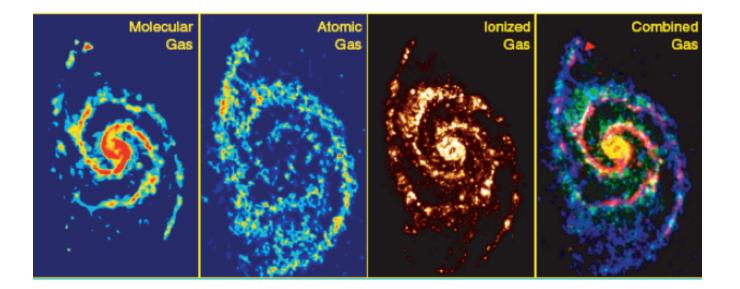
SNRs

- Left over ejecta from SN explosion
- About 100 SNRs visible in MW

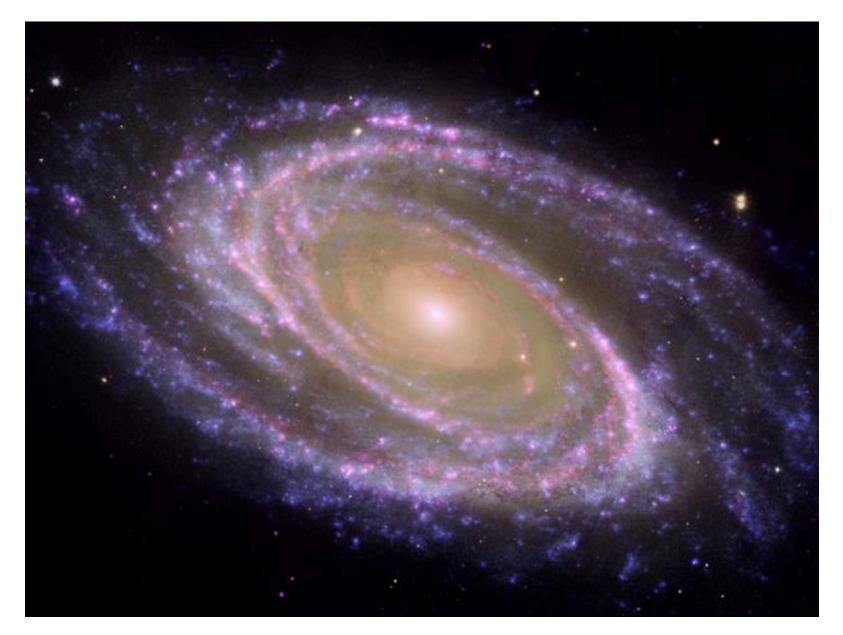

- Long, filamentary structures (but some compact, e.g., crab), emitting line radiation
- Strong in radio due to synchrotron emission; and clear in X-rays because of hot (10⁶ K gas)



Phases


- Neutral gas:
 - Cold, diffuse HI clouds: ~100K CNM (cold neutral medium)
 - Warm inter-cloud gas (8000 K): WNM
 - Galactic distribution
- Ionized gas:
 - H α emission, found in HII regions but also in huge diffuse reservoir
 - Warm Ionized Medium (WIM), 0.1 cm⁻³, 8000K
- Molecular Gas:
 - Traced by CO lines at mm
 - Concentrated in giant MC, 40 pc, $4x10^5 M_{\odot}$, 200 cm⁻³, 10 K
 - Sites of star formation
 - H_2 very common but other molecules detected as well
- Coronal Gas:
 - 10⁵⁻⁶K gas seen through highly ionized species, CIV, SVI, NV, OVI in absorption against background stars; also: free-free emission, radiative recombination, UV, Xray lines
 - Fills most of the halo; disk less clear

Distribution in the Milky Way

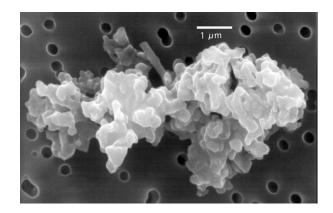

- MW = Sb/Sc ordinary spiral galaxy
- Atomic gas in flat distribution out to 18 kpc
- Molecular gas concentrated in 3 kpc molecular ring
- Spiral structure, difficult to figure out from inside the plane
- Other spiral galaxies: HII and dust along spiral arms. HI also interarm gas.

Summary & Pause

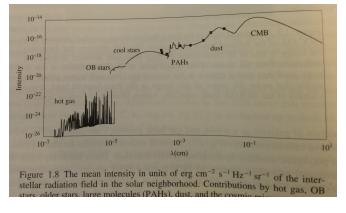
phase n (cm⁻³) T (K) Cycle of Gas ٠ hot, intercloud 0.003 106 warm, neutral 0.5 8000 warm, ionized 0.1 8000 cold, neutral 50 80 molecular clouds >200. 10 Coronal Gas HII regions 1-105 104 radiative Supernova cooling blast SN ΗIΙ blast radiative photorecombination4 ionization SN ejcta ΗI Fast Winds H₂ formation photoon dust dissociation Diffuse H₂ Cool Winds cloud collapse↓ Dense H₂ star formation Stars

Hubble/GALEX/Spitzer

Dust

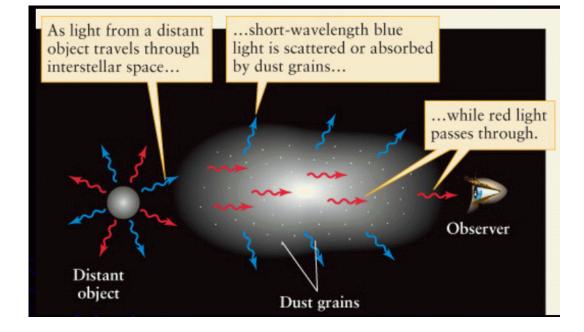

- Dust represents only 1% of the ISM mass
- Easily seen as `dark foreground' against bright background (e.g. horsehead nebula) or in our galaxy

"Sure it's beautiful, but I can't help thinking about all that interstellar dust out there."



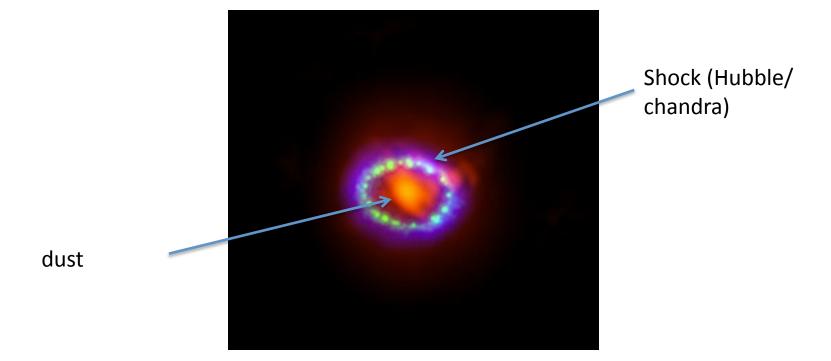
Why is Dust Important?

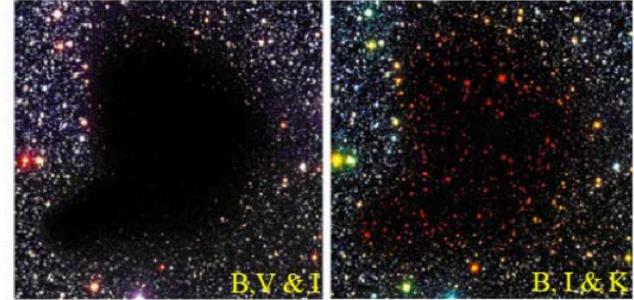
- Made of silicates/graphite
 - Dust locks a substantial fraction of the ISM heavy elements: Mg, Si, Fe, C
- Provides the principal source of opacity of the ISM
 - The ISM is very `smoggy', if it had the density of the Earth's atmosphere, the extinction would be 1 mag/meter: worst than NY or Beijing !!
- Dust grains come in all sizes from ~5 Å to ~3000 Å, $n(a) \approx a^{-3.5}$
 - Most grains are small, but most of the mass is in the larger ones
- They have a variety of compositions:
 - Silicates grains, carbonaceous grains, amorphous carbon, and polycyclic aromatic hydrocarbons (PAHs)
 - grain properties not the same from galaxy to galaxy or place to place



How do we see Dust?

- Dust attenuates and scatters UV/optical/NIR
 - E.g. in star formation regions UV light from stars is absorbed by dust and reemitted in the IR, also near black holes
 - The process depends on grain size distributions and properties
- Scattering produces reflection nebulae !
- Polarization of star light
- Large grains in radiative equilibrium with the IRF ~ 15 K
- Smaller grain ~75 K




First Evidence of Dust Production

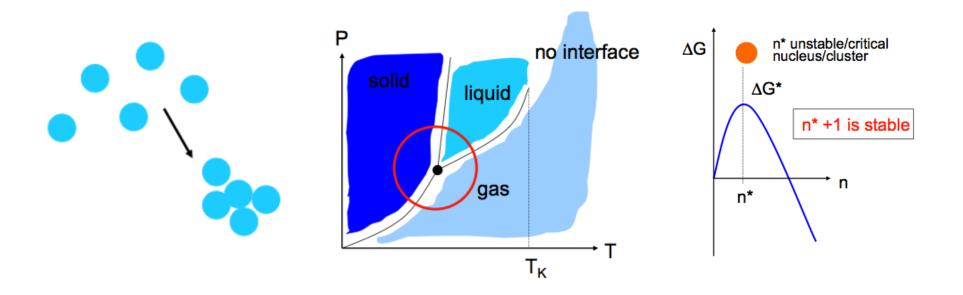
- The first dust evidence appeared in SN1987a's spectrum after 450 days
- Herschel/Alma observation show 0.4-0.7 M_{\odot} of dust in ejecta!

Alma image, showed at AAS 2014

Examples of the Effects of Dust

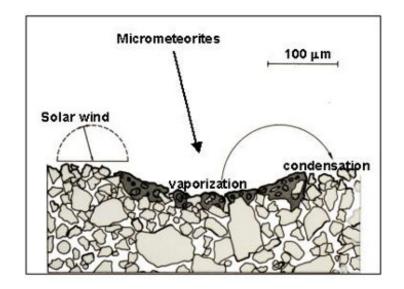
B68 dark cloud extincted stars appear red

Pleiades starlight scattered by dust

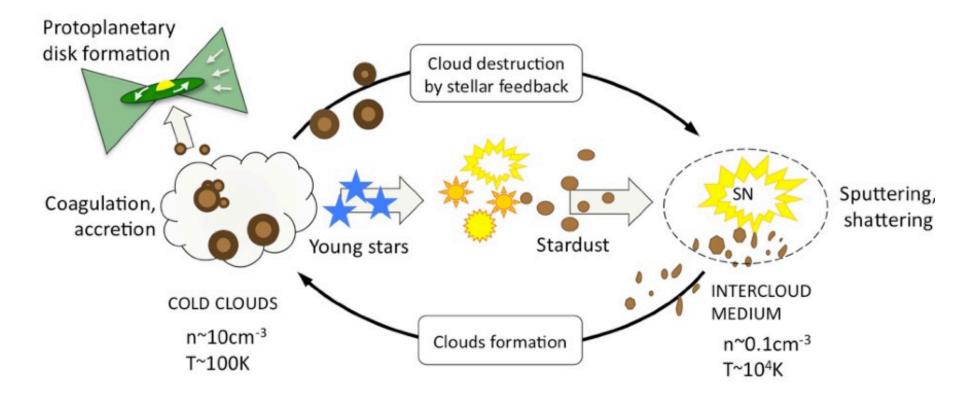


Dust Formation

- Dust forms by Nucleation
 - Phase change from gas to solid ⁽ⁱ⁾
 - Matter can exist in different states at same T,P
 - To form a nucleus you need to spend energy to form the surface
- Discuss formation rates
- End point
 - Dust form in hot/dense environments (e.g. stellar ejecta)
 - WR star ejecta colliding with the wind from a companion
 - Accretion also depends on T



Nucleation of carbon dioxide bubbles around a finger.


Dust Destruction

- Dust is destroyed by strong shocks in the warm phases of the ISM
 - Returns grain material to the gas phase
- 2 processes:
 - Sputtering, energetic ions hit grain
 - *At low energy (<100 eV/amu) nuclear interactions dominate, while at high Energy electronic excitations are more important. Atoms can also generate a cascade*
 - Sputtering also important in tokomaks for contamination of the plasma !!
 - Grain-grain collision leads to vaporization
 - Also studied for micro-meteorites impacting on space vehicles

Roughly $\sim 8M_{\odot}$ /year are destroyed

Dust life cycle in the Milky Way

Dust – two distinct populations: carbonaceous and silicate grains

Dust around young stars is old, and dust around old stars is young! Zhukovska & Gail (2011)

Recap