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The Stability of Clouds: Jeans Instability
We start with the basic equations for fluid motions:

The continuity equation (conservation of mass):

%+V-(pv)=0 (1)

where v is a vector.
The 2nd equation is the momentum equation, which basically states F' = ma:
ov
pgp TPV V)v=-VP—pV¢ (2)
Note that the equation for hydrostatic equilibrium can be derived from Euler’s in the case

equation when v is set to 0.

Finally, the gravitational potential ¢ is given by

V2p = 4nGp (3)




The Stability of Clouds: Jeans Instability

Consider an infinite, static medium with a density of p. Now, consider a small perturbation
to this medium:

v=vo+0dv, p=po+0dp, &= o+ ¢ (9)

If we subsititute these values into the continuity equation we get:

0
ap-i-v-(pv):O (10)
goes to
0
Ep+5V-V(po)+pov-5V=0 (11)

where it is assumed v = 0 and that all 2nd order terms, i.e. dpdv, go to 0. For the
momentum equation we get:




The Stability of Clouds: Jeans Instability

For the momentum equation we get:

gt—" +(v-V)v= —%}VP—VQS (12)
goes to
% = —%VJp - Vi (13)

where the (v - V)v term is 2nd order and vanishes and ¢, is the sound speed for an ideal,
isothermal gas which is equal to

kT
Cs = 4| —— (14)
WMy

(where P = c?p is the ideal gas law) and we have assumed that the unperturbed gas is in
hydrostatic equilibrium, i.e.

02
2V po = -V (15)
Po




The Stability of Clouds: Jeans Instability

Now we combine equations 6 and 8 by taking the derivative of equation 6 with respect to
time:

0%p OOV aov

2 T 5 'V(Po)‘l'PoV'W—O (16)

which if we assume pj is constant (and thus Vp, = 0) we get

=—pV - (17)

and then substituting equation 8 into the new equation:

9%
Wf = 2V2p + V26 (18)

Finally, using the Poisson equation, we arrive at our final equation:

0*dp C; o2
w = Po (%V 5/) -+ 471'G'(5p) (19)




The Stability of Clouds: Jeans Instability

Finally, using the Poisson equation, we arrive at our final equation:

0% 3
sz = po (;—;v%p + 47rG5p) (19)
Note that the equation:
0% c2
= (V) )
0*dp 2v72
proa c,Vip (21)

is the wave equation for a pressure wave with sound speed c,.




The Stability of Clouds: Jeans Instability

Let’s rewrite this as 1-D equation (we can assume 1-D perturbations).

&p c2 9%p
— 7 P g 22
52 — Po (po 552 WG5P) (22)

We adopt the following solution:

6p — 6p06i(wt—k:z:) (23)

If we plug this solution into the problem, the we then get the following dispersion equation:

w® = c(k* — k2) (24)

where

k2 = 47rG’c’—g (25)

8




The Stability of Clouds: Jeans Instability

K = 4nGE (25)

Thus, if £ > k;, w is real and we get a normal wave equation. However, if k < kj;, then
the solution for w is imaginary. The resulting time dependence solution for the perturbation
density is

2 dm %’0(6(""2-'%')”% + e~ (kP -k3D2) (26)

which increases exponentially with time. In other words, gravity wins over pressure, and the
pertubations are unstable. We can convert that into a length, the Jeans length

mc2
Gpo

kJ = 27T//\J, /\J = (27)

the Jeans length can be turned into a mass

c3m3/2 kT 3/2 ~1/2
m; = pory = ———7> = (—> P 28
J J G3 /2,0(1] /2 #mHG 0 ( )




Are Clouds stable to Gravitational Collapse ?

Forn(H2) =40 cm3 Ayj=6pc M;=450 Msun (cloud size)

For n(Hy) =100 cm3 Ay=4.pc M;=350 Msun (cloud size)

For n(H2) = 1000 cm3 Ay=12pc M;= 100 Msun (clump size)

Cloud masses and lengths exceed Jeans length masses.
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Jeans instability with rotation

The second case is the important special case where 8=90°, i.e. where the rotation axis
and the perturbation are perpendicular to each other. The dispersion relation takes the
simple form:

[w2 = 40% + ?k? — 47Gpg j

w
A 2 " oy . i
407 > 4nGpo - Clearly, the additional rotation term acts stabilizing. For
flast rot) sufficiently large rotation, in the direction perpendicular
P to the rotation axis, rotation can stabilize the largest
40° < A7l pg o C .
(slow rot.) scales from gravitational collapse. This is nothing else
than the fact that angular momentum is an enemy of
star formation, and that instead of collapsing into a
point, the cloud must now collapse into a disk.

unstable

(P

@ O

small wavelength (large k):
stabilized by pressure

large wavelength (small k):
stabilized by rotation




Collapse of a homogeneous Gas Cloud

Imagine P=0 (correct at least at the beginning), the same as T=0

Most of the action takes place at the last minute
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Fragmentation

During the collapse, p increases. As long as the density still remains adequately low for the
cloud to be transparent, the released thermal energy is radiated into the universe and the
temperature remains approximately constant. As

T3
ﬂ--“'[‘] X —
p

suggests, this leads to a decrease of the Jeans mass. In particular, sub-sections of the
cloud suddenly surpass their own Jeans limit and start collapsing on their own. As also tsis
smaller for higher densities, these sub-collapses proceed faster. This clearly leads to
fragmentation.



Opacity Limit

We have neglected up to now the effect of pressure, or equivalently
assumed a low, constant temperature. As the density becomes higher and
higher, the gas increasingly becomes opaque to its own radiation.
Therefore, the temperature must start to rise at some point. This eventually
leads to a minimum fragment size into which the cloud can break up. This

1s know as the opacity limit.
3
1"[‘/ X T—
\f p

In the opaque limit (e.g. adiabatic), T~P??° (since p~pT) -> T~p??3

In the 1sothermal case:

M; TI%/‘Z/)—I/?. X /)1/'2

So 1n the adiabatic case the Jeans mass increases with density, which means
that the combination of decrease of M; in the 1sothermal regime and
increase of 1t in the adiabatic leads to a minimum fragment mass



Minimum Fragment Mass

We can estimate the critical mass by some simple energy considerations.

1)Heating
The gravitational binding energy of a collapsing gas ball is
. GM?
W= —q R q=3/5 for cst. density

The collapse happens on a typical timescale ts

boo = 3 1/2
117\ 32G g

The liberated binding energy per second which heats the gas is therefore

Lyy ™

W 2v2 (G3MmN Y
q RS
2) Cooling
In the same time cools the gas by radiating as a blackbody at the surface of the gas blob.

f: correction factor i.e

_ 2 _rrd
L= fArRoT radiation efficiency<1



Minimum Fragment Mass

The gas will start to heat up (become adiabatic) as soon as the cooling becomes slower
than the heating. In order to prevent this we must have:

Wi

<y
‘ff
. L)
l.e. trs
22 (G3MON\ Y .
q f( 75 ) < farR*cT? L = fAxR2oT*
m A
Solving for M gives the criterion
I 4 2
M5 <MD ., = fPRT®
6¢°

In the same time, the mass must be bigger than the Jeans mass for collapse to proceed, so

M; <M < M.y

When M, and Mcit become equal, we hit the opacity limit.



Minimum Fragment Mass

e

‘ ‘ | ; 4 .
Using our earlier result for the Jeans mass Y My = —mpA3

167 \/Gp T3

and combining the equations above, we finally find for the minimal fragment mass

225154 , g \1/2 (92
Mirag = G2 (003) fi/2r?

(=5.24)
. k
Recalling that the isothermal sound speed is ¢* = o T we get using q=3/5
my
T1/4
[ Mjrqq ~ 1.13 x 103 e [g]J

We see that the result only depends weakly on the temperature. Numerically we get
T=10 K, f=1 => j\vffrag ~ 001]\1@ ~ ].OJ\JJ.u,p.,jte.r

T= 100 K’ =0.01 => AIf?(lg ~ 0171\[(‘)

From this very simple estimate we thus see that cloud fragmentation leads to objects going
from the upper planetary mass domain to low mass stars (M dwarfs, the most frequent type
of stars in the galaxy).



Collapse
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At Last

* https://www.youtube.com/watch?v=YbdwTwBS8jtc



Reading Assignment

These notes
Chapter 2 and 10 in ‘The Formation of Stars’ (Stahler & Palla)

Paper by Bade 1998:
— http://adsabs.harvard.edu/abs/1998ApJ...508L..95B

Review by Larson: http://www.astro.yale.edu/larson/papers/
Ringberg93.pdf



